Skip to main content

Nonlinear Dynamics of Atomic and Molecular Systems in an Electromagnetic Field: Deterministic Chaos and Strange Attractors

  • 91 Accesses

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 363)

Abstract

We present a new mathematical approach to studying deterministic chaos and strange attractors in dynamics of nonlinear processes in atomic and molecular systems in an electromagnetic field. To treat chaotic dynamics of systems it is constructed effective scheme that includes new quantum-dynamic models (based on the finite-difference solution of the Schrödinger equation, optimized operator perturbation theory and realistic model potential for quantum systems) and advanced nonlinear analysis and a chaos theory methods such as power spectrum analysis, the correlation integral algorithm, the fractal method, the Lyapunov’s exponents and Kolmogorov entropy analysis, etc. Availability of multiple resonances with super little widths in spectrum of an atom in external magnetic field is treated and provided by interference phenomena and fluctuations. Dynamics of resonances in spectrum of diatomic molecule in the infrared electromagnetic field is considered and the topological and dynamical invariants are recalculated.

Keywords

  • Nonlinear dynamics
  • Atomic systems
  • Electromagnetic field
  • Chaos
  • Resonances

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   24.95
Price excludes VAT (Ukraine)
  • DOI: 10.1007/978-3-030-77310-6_11
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
EUR   139.09
Price includes VAT (Ukraine)
  • ISBN: 978-3-030-77310-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
EUR   169.99
Price excludes VAT (Ukraine)
Fig. 1

References

  1. Berman, G.P., Bulgakov, E.N., Holm, D.D.: Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant IR field. Phys. Rev. A. 52, 3074–3080 (1995)

    Google Scholar 

  2. Zhang, C., Katsouleas, T., Joshi, C.: Harmonic frequency generation and chaos in laser driven molecular vibrations. In: Proc. of Shortwavelength Physics with Intense Laser Pulses, San-Diego, CA, 29–31 Mar 1993

    Google Scholar 

  3. Zhai, L.-J., Zheng, Y.-J., Ding, S.-L.: Dynamics of vibrational chaos and entanglement in triatomic molecules: Lie algebraic model. Chin. Phys. B. 21(7), 070503 (2012)

    Google Scholar 

  4. Lombardi, M., Matzkin, A.: Dynamical entanglement and chaos: the case of Rydberg molecules. Phys. Rev. A. 73, 062335 (2006)

    Google Scholar 

  5. Arango, C.A., Kennerly, W.W., Ezra, G.S.: Classical and quantum mechanics of diatomic molecules in tilted fields. J. Chem. Phys. 122, 184303 (2015)

    Google Scholar 

  6. Glushkov, A.V., Prepelitsa, G.P., Svinarenko, A.A., Zaichko, P.A.: Studying interaction dynamics of the non-linear vibrational systems within non-linear prediction method (application to quantum autogenerators). In: Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, J. (eds.) Dynamical Systems Theory, T1, pp. 467–477. Lodz Univ. Press, Lodz (2013)

    Google Scholar 

  7. Glushkov, A.V., Buyadzhi, V.V., Kvasikova, A.S., Ignatenko, A.V., Kuznetsova, A.A., Prepelitsa, G.P., Ternovsky, V.B.: Nonlinear chaotic dynamics of quantum systems: molecules in an electromagnetic field and laser systems. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds.) Quantum Systems in Physics, Chemistry, and Biology Series: Progress in Theoretical Chemistry and Physics, Vol 30, pp. 169--180, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50255-7_10

    Google Scholar 

  8. Ignatenko, A.V., Buyadzhi, A.A., Buyadzhi, V.V., Kuznetsova, A.A., Mashkantsev, A.A., Ternovsky, E.V.: Nonlinear chaotic dynamics of quantum systems: molecules in an electromagnetic field. In: Jenkins, S., Kirk, S.R., Maruani, J., Brändas, E. (eds.) Advances in Quantum Chemistry, vol. 78, pp. 149–170. Elsevier, Cambridge, MA (2019)

    Google Scholar 

  9. Gottwald, G., Melbourne, I.: Testing for chaos in deterministic systems with noise. Physica D. 212, 100–110 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Google Scholar 

  11. Kennel, M.B., Brown, R., Abarbanel, H.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A. 45, 3403–3411 (1992)

    Google Scholar 

  12. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993)

    MathSciNet  Google Scholar 

  13. Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308, 1–64 (1999)

    MathSciNet  Google Scholar 

  14. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33, 1134–1140 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D. 9, 189–208 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1986)

    MATH  Google Scholar 

  17. Glushkov, A.V.: Methods of a Chaos Theory. Astroprint, Odessa (2012)

    Google Scholar 

  18. Glushkov, A.V.: Relativistic Quantum Theory. Quantum Mechanics of Atomic Systems. Astroprint, Odessa (2008)

    Google Scholar 

  19. Glushkov, A.V., Svinarenko, A.A., Loboda, A.V.: Theory of Neural Networks on Basis of Photon Echo and Its Program Realization. TEC, Odessa (2003)

    Google Scholar 

  20. Khetselius, O.Y.: Forecasting evolutionary dynamics of chaotic systems using advanced non-linear prediction method. In: Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, J. (eds.) Dynamical Systems Applications, T2, pp. 145–152. Lodz Univ. Press, Lodz (2013)

    Google Scholar 

  21. Bunyakova, Y.Y., Ternovsky, V.В., Dubrovskaya, Y.V., Ignatenko, A.V., Svinarenko, A.A., Vitavetskaya, L.A.: Analysis of the beryllium-7 activity concentration dynamics in the atmospheric environment time series after the Fukushima Daiichi nuclear power plants emergency. Sensor Electr. Microsyst. Technol. 14(4), 73–82 (2017)

    Google Scholar 

  22. Khetselius, O.Y., Brusentseva, S.V., Tkach, T.B.: Studying interaction dynamics of chaotic systems within non-linear prediction method. In: Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, J. (eds.) Application to Neurophysiology Dynamical Systems Applications, T2, pp. 251–259. Lodz Univ. Press, Lodz (2013)

    Google Scholar 

  23. Svinarenko, A.A., Ignatenko, A.V., Ternovsky, V., Nikola, L., Seredenko, S.S., Tkach, T.B.: Advanced relativistic model potential approach to calculation of radiation transition parameters in spectra of multicharged ions. J. Phys. Conf. Ser. 548, 012047 (2014)

    Google Scholar 

  24. Florko, T.A., Ambrosov, S.V., Svinarenko, A.A., Tkach, T.B.: Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J. Phys. Conf. Ser. 397, 012037 (2012)

    Google Scholar 

  25. Buyadzhi, V.V., Zaichko, P.A., Gurskaya, M.Y., Kuznetsova, A.A., Ponomarenko, E.L., Ternovsky, V.B.: Relativistic theory of excitation and ionization of Rydberg atomic systems in a Black-body radiation field. J. Phys. Conf. Ser. 810, 012047 (2017)

    Google Scholar 

  26. Svinarenko, A.A., Khetselius, O.Y., Buyadzhi, V.V., Florko, T.A., Zaichko, P.A., Ponomarenko, E.L.: Spectroscopy of Rydberg atoms in a black-body radiation field: Relativistic theory of excitation and ionization. J. Phys. C Ser. 548, 012048 (2014)

    Google Scholar 

  27. Khetselius, O.Y.: Hyperfine Structure of Atomic Spectra. Astroprint, Odessa (2008)

    Google Scholar 

  28. Khetselius, O.Y.: Quantum Structure of Electroweak Interaction in Heavy Finite Fermi-Systems. Astroprint, Odessa (2011)

    Google Scholar 

  29. Khetselius, O.Y.: Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys. Conf. Ser. 397, 012012 (2012)

    Google Scholar 

  30. Khetselius, O.Y.: Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys. Conf. Ser. 194, 022009 (2009)

    Google Scholar 

  31. Khetselius, O.Y.: Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. J. Quant. Chem. 109, 3330–3335 (2009)

    Google Scholar 

  32. Khetselius, O.Y.: Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys. Scr. 135, 014023 (2009)

    Google Scholar 

  33. Khetselius, O.Y.: Relativistic calculating the spectral lines hyperfine structure parameters for heavy ions. AIP Conf. Proc. 1058, 363–365 (2008)

    Google Scholar 

  34. Khetselius, O.Y.: Relativistic hyperfine structure spectral lines and atomic parity non-conservation effect in heavy atomic systems within QED theory. AIP Conf. Proc. 1290(1), 29–33 (2010)

    Google Scholar 

  35. Svinarenko, A.A.: Study of spectra for lanthanides atoms with relativistic many-body perturbation theory: Rydberg resonances. J. Phys. Conf. Ser. 548, 012039 (2014)

    Google Scholar 

  36. Buyadzhi, V.V., Kuznetsova, A.A., Buyadzhi, A.A., Ternovsky, E.V., Tkach, T.B.: Advanced quantum approach in radiative and collisional spectroscopy of multicharged ions in plasmas. In: Jenkins, S., Kirk, S.R., Maruani, J., Brändas, E. (eds.) Advances in Quantum Chemistry, vol. 78, pp. 171–191. Elsevier, Cambridge, MA (2019)

    Google Scholar 

  37. Dubrovskaya, Y.V., Khetselius, O.Y., Vitavetskaya, L.A., Ternovsky, V.B., Serga, I.N.: Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. In: Jenkins, S., Kirk, S.R., Maruani, J., Brändas, E. (eds.) Advances in Quantum Chemistry, vol. 78, pp. 193–222. Elsevier, Cambridge, MA (2019)

    Google Scholar 

  38. Khetselius, O.Y.: Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for li-like multicharged ions. In: Jenkins, S., Kirk, S.R., Maruani, J., Brändas, E. (eds.) Advances in Quantum Chemistry, vol. 78, pp. 223–251. Elsevier, Cambridge, MA (2019)

    Google Scholar 

  39. Glushkov, A.V., Efimov, V.A., Gopchenko, E.D., Dan’kov, S.V., Polishchyuk, V.N., Goloshchak, O.P.: Calculation of spectroscopic characteristics 4 of alkali-metal dimers on the basis of a model perturbation theory. Opt. Spectr. 84(5), 670–678 (1998)

    Google Scholar 

  40. Glushkov, A.V., Malinovskaya, S.V., Loboda, A.V., Shpinareva, I.M., Prepelitsa, G.P.: Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J. Phys. Conf. Ser. 35, 420–424 (2006)

    Google Scholar 

  41. Glushkov, A.V.: Relativistic multiconfiguration time-dependent self-consistent-field theory for molecules. Sov. Phys. J. 34(10), 871–876 (1991)

    Google Scholar 

  42. Glushkov, A.V.: Atom in an Electromagnetic Field. KNT, Kiev (2005)

    Google Scholar 

  43. Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Glushkov, A.V. et al. (2021). Nonlinear Dynamics of Atomic and Molecular Systems in an Electromagnetic Field: Deterministic Chaos and Strange Attractors. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems II: Mathematical and Numerical Approaches. DSTA 2019. Springer Proceedings in Mathematics & Statistics, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-77310-6_11

Download citation